Contribution of autolysin to virulence of Streptococcus pneumoniae

Author:

Berry A M1,Lock R A1,Hansman D1,Paton J C1

Affiliation:

1. Department of Microbiology, Adelaide Children's Hospital, South Australia.

Abstract

Insertion-duplication mutagenesis was used to construct an autolysin-negative derivative of Streptococcus pneumoniae. This derivative was obtained by first transforming the nonencapsulated strain Rx1 with a derivative of the vector pVA891 carrying a 375-base-pair TaqI DNA fragment from the middle of the autolysin structural gene. DNA was extracted from the resultant erythromycin-resistant, autolysin-negative rough pneumococcus and used to transform S. pneumoniae D39, a virulent type 2 strain. Several erythromycin-resistant transformants were obtained from two independent experiments, and none of these transformants produced autolysin. Southern blot analysis confirmed that the autolysin gene in these transformants had been interrupted by the plasmid-derived sequences. The autolysin-negative mutants showed markedly reduced virulence for mice compared with that of strain D39; intranasal and intraperitoneal 50% lethal doses were increased 10(2)- and 10(5)-fold, respectively. Autolysin production was reinstated in one of the mutants by back-transformation with the cloned autolysin gene, with the concomitant loss of erythromycin resistance; the virulence of this isolate for mice was indistinguishable from that of D39. The importance of autolysin in pathogenesis was confirmed by immunization-challenge studies. Mice immunized with purified autolysin survived significantly longer than did control mice after intranasal challenge with strain D39. This study provides direct evidence that the pneumococcal autolysin contributes to virulence and identifies it as a potential vaccine antigen.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3