Phage-antibiotic synergy suppresses resistance emergence of Klebsiella pneumoniae by altering the evolutionary fitness

Author:

Qin Kunhao123ORCID,Shi Xing2,Yang Kai4,Xu Qiuqing2,Wang Fuxing5,Chen Senxiong5,Xu Tingting2,Liu Jinquan2,Wen Wangrong67,Chen Rongchang2,Liu Zheng5ORCID,Cui Li4ORCID,Zhou Kai12ORCID

Affiliation:

1. Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China

2. Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China

3. Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Health Science Center, Medical Department of Jinggangshan University, Ji'an, China

4. Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China

5. Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China

6. Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, China

7. Clinical Laboratory Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China

Abstract

ABSTRACT Phage-antibiotic synergy (PAS) represents a superior treatment strategy for pathogen infections with less probability of resistance development. Here, we aim to understand the molecular mechanism by which PAS suppresses resistance in terms of population evolution. A novel hypervirulent Klebsiella pneumoniae (KP) phage H5 was genetically and structurally characterized. The combination of H5 and ceftazidime (CAZ) showed a robust synergistic effect in suppressing resistance emergence. Single-cell Raman analysis showed that the phage-CAZ combination suppressed bacterial metabolic activities, contrasting with the upregulation observed with phage alone. The altered population evolutionary trajectory was found to be responsible for the contrasting metabolic activities under different selective pressures, resulting in pleiotropic effects. A pre-existing wcaJ point mutation ( wcaJ G949A ) was exclusively selected by H5, conferring a fitness advantage and up-regulated activity of carbohydrate metabolism, but also causing a trade-off between phage resistance and collateral sensitivity to CAZ. The wcaJ point mutation was counter-selected by H5-CAZ, inducing various mutations in galU that imposed evolutionary disadvantages with higher fitness costs, and suppressed carbohydrate metabolic activity. H5 and H5-CAZ treatments resulted in opposite effects on the transcriptional activity of the phosphotransferase system and the ascorbate and aldarate metabolism pathway, suggesting potential targets for phage resistance suppression. Our study reveals a novel mechanism of resistance suppression by PAS, highlighting how the complexity of bacterial adaptation to selective pressures drives treatment outcomes. IMPORTANCE Phage-antibiotic synergy (PAS) has been recently proposed as a superior strategy for the treatment of multidrug-resistant pathogens to effectively reduce bacterial load and slow down both phage and antibiotic resistance. However, the underlying mechanisms of resistance suppression by PAS have been poorly and rarely been studied. In this study, we tried to understand how PAS suppresses the emergence of resistance using a hypervirulent Klebsiella pneumoniae (KP) strain and a novel phage H5 in combination with ceftazidime (CAZ) as a model. Our study reveals a novel mechanism by which PAS drives altered evolutionary trajectory of bacterial populations, leading to suppressed emergence of resistance. The findings advance our understanding of how PAS suppresses the emergence of resistance, and are imperative for optimizing the efficacy of phage-antibiotic therapy to further improve clinical outcomes.

Funder

MOST | National Key Research and Development Program of China

Shenzhen Basic Research projects

Chinese Academy of Sciences

MOST | National Natural Science Foundation of China

Shenzhen Basic Research Key projects

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3