Microbe-derived uremic solutes enhance thrombosis potential in the host

Author:

Nemet Ina12,Funabashi Masanori345,Li Xinmin S.12,Dwidar Mohammed12ORCID,Sangwan Naseer12,Skye Sarah M.12,Romano Kymberleigh A.12,Cajka Tomas6,Needham Brittany D.7,Mazmanian Sarkis K.7,Hajjar Adeline M.12,Rey Federico E.8,Fiehn Oliver6,Tang W. H. Wilson129ORCID,Fischbach Michael A.34510ORCID,Hazen Stanley L.129ORCID

Affiliation:

1. Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA

2. Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA

3. Department of Bioengineering, Stanford University, Stanford, California, USA

4. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA

5. ChEM-H Institute, Stanford University, Stanford, California, USA

6. West Coast Metabolomics Center, University of California, Davis, California, USA

7. Departments of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA

8. Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA

9. Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA

10. Chan Zuckerberg Biohub, San Francisco, California, USA

Abstract

ABSTRACT p -Cresol sulfate ( p CS) and indoxyl sulfate (IS), gut microbiome-derived metabolites, are traditionally associated with cardiovascular disease (CVD) risks in the setting of impaired kidney function. While pharmacologic provision of p CS or IS can promote pro-thrombotic phenotypes, neither the microbial enzymes involved nor direct gut microbial production have been linked to CVD. Untargeted metabolomics was performed on a discovery cohort ( n = 1,149) with relatively preserved kidney function, followed by stable isotope-dilution mass spectrometry quantification of p CS and IS in an independent validation cohort ( n = 3,954). Genetic engineering of human commensals to produce p -cresol and indole gain-of-function and loss-of-function mutants, followed by colonization of germ-free mice, and studies on host thrombosis were performed. Systemic p CS and IS levels were independently associated with all-cause mortality. Both in vitro and within colonized germ-free mice p -cresol productions were recapitulated by collaboration of two organisms: a Bacteroides strain that converts tyrosine to 4-hydroxyphenylacetate, and a Clostridium strain that decarboxylates 4-hydroxyphenylacetate to p- cresol. We then engineered a single organism, Bacteroides thetaiotaomicron , to produce p- cresol, indole, or both metabolites. Colonizing germ-free mice with engineered strains , we show the gut microbial genes for p- cresol ( hpdBCA ) and indole ( tryptophanase ) are sufficient to confer a pro-thrombotic phenotype in vivo . Moreover, human fecal metagenomics analyses show that abundances of hpdBCA and tryptophanase are associated with CVD. These studies show that p CS and IS, two abundant microbiome-derived metabolites, play a broader potential role in CVD than was previously known. They also suggest that therapeutic targeting of gut microbial p- cresol- and indole-producing pathways represent rational targets for CVD. IMPORTANCE Alterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks. Notably, the previously identified uremic toxins p -cresol sulfate and indoxyl sulfate were shown to predict 5-year mortality risks. After identifying the microbes and microbial enzymes involved in the generation of these uremic toxins, we used bioengineering technologies coupled with colonization of germ-free mice to show that the gut microbial genes that generate p -cresol and indole are sufficient to confer p -cresol sulfate and indoxyl sulfate formation, and a pro-thrombotic phenotype in vivo . The findings and tools developed serve as a critical step in both the study and targeting of these gut microbial pathways in vivo .

Funder

HHS | National Institutes of Health

Fondation Leducq

Chan Zuckerberg Initiative

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3