Diverse Flavonoids Stimulate NodD1 Binding to nod Gene Promoters in Sinorhizobium meliloti

Author:

Peck Melicent C.1,Fisher Robert F.1,Long Sharon R.1

Affiliation:

1. Department of Biological Sciences, Stanford University, Stanford, California 94305-5020

Abstract

ABSTRACT NodD1 is a member of the NodD family of LysR-type transcriptional regulators that mediates the expression of nodulation ( nod ) genes in the soil bacterium Sinorhizobium meliloti . Each species of rhizobia establishes a symbiosis with a limited set of leguminous plants. This host specificity results in part from a NodD-dependent upregulation of nod genes in response to a cocktail of flavonoids in the host plant's root exudates. To demonstrate that NodD is a key determinant of host specificity, we expressed nodD genes from different species of rhizobia in a strain of S. meliloti lacking endogenous NodD activity. We observed that nod gene expression was initiated in response to distinct sets of flavonoid inducers depending on the source of NodD. To better understand the effects of flavonoids on NodD, we assayed the DNA binding activity of S. meliloti NodD1 treated with the flavonoid inducer luteolin. In the presence of luteolin, NodD1 exhibited increased binding to nod gene promoters compared to binding in the absence of luteolin. Surprisingly, although they do not stimulate nod gene expression in S. meliloti , the flavonoids naringenin, eriodictyol, and daidzein also stimulated an increase in the DNA binding affinity of NodD1 to nod gene promoters. In vivo competition assays demonstrate that noninducing flavonoids act as competitive inhibitors of luteolin, suggesting that both inducing and noninducing flavonoids are able to directly bind to NodD1 and mediate conformational changes at nod gene promoters but that only luteolin is capable of promoting the downstream changes necessary for nod gene induction.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3