How the Necrotrophic Fungus Alternaria brassicicola Kills Plant Cells Remains an Enigma

Author:

Cho Yangrae1

Affiliation:

1. Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk, Republic of Korea

Abstract

ABSTRACT Alternaria species are mainly saprophytic fungi, but some are plant pathogens. Seven pathotypes of Alternaria alternata use secondary metabolites of host-specific toxins as pathogenicity factors. These toxins kill host cells prior to colonization. Genes associated with toxin synthesis reside on conditionally dispensable chromosomes, supporting the notion that pathogenicity might have been acquired several times by A. alternata . Alternaria brassicicola , however, seems to employ a different mechanism. Evidence on the use of host-specific toxins as pathogenicity factors remains tenuous, even after a diligent search aided by full-genome sequencing and efficient reverse-genetics approaches. Similarly, no individual genes encoding lipases or cell wall-degrading enzymes have been identified as strong virulence factors, although these enzymes have been considered important for fungal pathogenesis. This review describes our current understanding of toxins, lipases, and cell wall-degrading enzymes and their roles in the pathogenesis of A. brassicicola compared to those of other pathogenic fungi. It also describes a set of genes that affect pathogenesis in A. brassicicola . They are involved in various cellular functions that are likely important in most organisms and probably indirectly associated with pathogenesis. Deletion or disruption of these genes results in weakly virulent strains that appear to be sensitive to the defense mechanisms of host plants. Finally, this review discusses the implications of a recent discovery of three important transcription factors associated with pathogenesis and the putative downstream genes that they regulate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3