Differential Regulation of the Cellulase Transcription Factors XYR1, ACE2, and ACE1 in Trichoderma reesei Strains Producing High and Low Levels of Cellulase

Author:

Portnoy Thomas12,Margeot Antoine1,Seidl-Seiboth Verena3,Le Crom Stéphane2,Ben Chaabane Fadhel1,Linke Rita3,Seiboth Bernhard3,Kubicek Christian P.3

Affiliation:

1. IFP Energies nouvelles, Département Biotechnologie, 1-4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex

2. Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, and CNRS, UMR 8197, Paris F-75005, France

3. Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060 Vienna, Austria

Abstract

ABSTRACT Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly being investigated for second-generation biofuel production from lignocellulosic biomass. The induction mechanisms of T. reesei cellulases have been described recently, but the regulation of the genes involved in their transcription has not been studied thoroughly. Here we report the regulation of expression of the two activator genes xyr1 and ace2 , and the corepressor gene ace1 , during the induction of cellulase biosynthesis by the inducer lactose in T. reesei QM 9414, a strain producing low levels of cellulase (low producer). We show that all three genes are induced by lactose. xyr1 was also induced by d -galactose, but this induction was independent of d -galactose metabolism. Moreover, ace1 was carbon catabolite repressed, whereas full induction of xyr1 and ace2 in fact required CRE1. Significant differences in these regulatory patterns were observed in the high-producer strain RUT C30 and the hyperproducer strain T. reesei CL847. These observations suggest that a strongly elevated basal transcription level of xyr1 and reduced upregulation of ace1 by lactose may have been important for generating the hyperproducer strain and that thus, these genes are major control elements of cellulase production.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3