Pathogenesis of Avian Influenza A (H5N1) Viruses in Ferrets

Author:

Zitzow Lois A.12,Rowe Thomas1,Morken Timothy3,Shieh Wun-Ju3,Zaki Sherif3,Katz Jacqueline M.1

Affiliation:

1. Influenza BranchInfectious Disease Pathology Activity

2. Division of Animal Resources, Emory University, Atlanta, Georgia 30322

3. Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

Abstract

ABSTRACT Highly pathogenic avian influenza A H5N1 viruses caused outbreaks of disease in domestic poultry and humans in Hong Kong in 1997. Direct transmission of the H5N1 viruses from birds to humans resulted in 18 documented cases of respiratory illness, including six deaths. Here we evaluated two of the avian H5N1 viruses isolated from humans for their ability to replicate and cause disease in outbred ferrets. A/Hong Kong/483/97 virus was isolated from a fatal case and was highly pathogenic in the BALB/c mouse model, whereas A/Hong Kong/486/97 virus was isolated from a case with mild illness and exhibited a low-pathogenicity phenotype in mice. Ferrets infected intranasally with 10 7 50% egg infectious doses (EID 50 ) of either H5N1 virus exhibited severe lethargy, fever, weight loss, transient lymphopenia, and replication in the upper and lower respiratory tract, as well as multiple systemic organs, including the brain. Gastrointestinal symptoms were seen in some animals. In contrast, weight loss and severe lethargy were not noted in ferrets infected with 10 7 EID 50 of two recent human H3N2 viruses, although these viruses were also isolated from the brains, but not other extrapulmonary organs, of infected animals. The results demonstrate that both H5N1 viruses were highly virulent in the outbred ferret model, unlike the differential pathogenicity documented in inbred BALB/c mice. We propose the ferret as an alternative model system for the study of these highly pathogenic avian viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3