High-level recombination specific to polyomavirus genomes targeted to the integration-transformation pathway

Author:

Hacker D1,Fluck M M1

Affiliation:

1. Department of Microbiology, Michigan State University, East Lansing 48824-1101.

Abstract

An unusually high incidence of interviral recombination was found in the process of integration of the polyomavirus genome concomitant with neoplastic transformation of nonpermissive cells. Transformants were isolated after mixed infections of Fischer rat cells with two mutants lacking restriction endonuclease sites and were analyzed for the presence of unselected integrated recombinant restriction fragments. A large fraction of the transformants isolated (38% of the 64 transformed cell lines studied) contained recombinant viral genomes that had undergone recombination in a 1.3-, 1.7-, or 3.6-kilobase-pair interval. More than 90% of these recombinant transformants showed evidence of crossovers in multiple intervals. To our knowledge, the recombination frequencies observed in these experiments represent the highest frequencies of homologous recombination reported for a mitotic mammalian system that does not involve transfection. In contrast to the elevated level of recombination in the integrated viral genomes, no evidence of recombination was obtained among the replicated unintegrated pool of viral genomes isolated from the same population of infected cells from which the recombinant transformants were derived. Either of two hypotheses can provide an explanation for the segregated recombination: either recombination occurs at elevated levels in a small, recombination-prone fraction of the population destined to become transformed, or recombination occurs only among those viral genomes which are engaged in the process of integration and thus interact with a recombinogenic host machinery (for example, the host scaffold). We favor the latter hypothesis.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3