Pneumocystis jiroveci Dihydropteroate Synthase Polymorphisms Confer Resistance to Sulfadoxine and Sulfanilamide in Saccharomyces cerevisiae

Author:

Meneau I.1,Sanglard D.1,Bille J.1,Hauser P. M.1

Affiliation:

1. Institute of Microbiology, University Hospital of Lausanne, 1011 Lausanne, Switzerland

Abstract

ABSTRACT Failure of anti- Pneumocystis jiroveci prophylaxis with sulfa drugs is associated with mutations within the putative active site of the fungal dihydropteroate synthase (DHPS), an enzyme encoded by the multidomain FAS gene. This enzyme is involved in the essential biosynthesis of folic acid. The most frequent polymorphisms are two mutations leading to two amino acid changes ( 55 Trp-Arg- 57 Pro to 55 Ala-Arg- 57 Ser), observed as a single or double mutation in the same P. jiroveci isolate. In the absence of a culture method for P. jiroveci , we studied potential resistance to sulfa drugs conferred by these polymorphisms by using Saccharomyces cerevisiae as a model. Single or double mutations identical to those observed in the DHPS domain of the P. jiroveci FAS gene were introduced by in vitro site-directed mutagenesis into alleles of the S. cerevisiae FOL1 gene, which is the orthologue of the P. jiroveci FAS gene. The mutated alleles were integrated at the genomic locus in S. cerevisiae and expressed by functional complementation in a strain with a disrupted FOL1 allele. The single mutation 55 Trp to 55 Ala conferred resistance to sulfanilamide, whereas the single mutation 57 Pro to 57 Ser conferred resistance to both sulfanilamide and sulfadoxine. Both single mutations also separately conferred hypersensitivity to sulfamethoxazole and dapsone. The resistance to sulfadoxine is consistent with epidemiological data on P. jiroveci . The double mutation 55 Trp-Arg- 57 Pro to 55 Ala-Arg- 57 Ser conferred on S. cerevisiae a requirement for p -aminobenzoate, suggesting reduced affinity of DHPS for this substrate. This characteristic is commonly observed in mutated DHPS enzymes conferring sulfa drug resistance from other organisms. However, the double mutation conferred hypersensitivity to sulfamethoxazole, which is not in agreement with epidemiological data on P. jiroveci . Taken together, our results suggest that the DHPS polymorphisms observed in P. jiroveci confer sulfa drug resistance on this pathogen.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3