An intestine-specific homeobox gene regulates proliferation and differentiation

Author:

Suh E1,Traber P G1

Affiliation:

1. Department of Medicine, University of Pennsylvania, Philadelphia 19104-6144, USA.

Abstract

Precise regulation of cellular proliferation, differentiation, and senescence results in the continuous renewal of the intestinal epithelium with maintenance of a highly ordered tissue architecture. Here we show that an intestine-specific homeobox gene, Cdx2, is a transcription factor that regulates both proliferation and differentiation in intestinal epithelial cells. Conditional expression of Cdx2 in IEC-6 cells, an undifferentiated intestinal cell line, led to arrest of proliferation for several days followed by a period of growth resulting in multicellular structures containing a well-formed columnar layer of cells. The columnar cells had multiple morphological characteristics of intestinal epithelial cells. Enterocyte-like cells were polarized with tight junctions, lateral membrane interdigitations, and well-organized microvilli with associated glycocalyx located at the apical pole. Remarkably, there were also cells with a goblet cell-like ultrastructure, suggesting that two of the four intestinal epithelial cell lineages may arise from IEC-6 cells. Molecular evidence for differentiation was shown by demonstrating that cells expressing high levels of Cdx2 expressed sucrase-isomaltase, an enterocyte-specific gene which is a well-defined target for the Cdx2 protein. Taken together, our data suggest that Cdx2 may play a role in directing early processes in intestinal cell morphogenesis and in the maintenance of the differentiated phenotype by supporting transcription of differentiated gene products. We propose that Cdx2 is part of a regulatory network that orchestrates a developmental program of proliferation, morphogenesis, and gene expression in the intestinal epithelium.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference41 articles.

1. Inducible transformation of fibroblasts using a metallothionein-v-myc gene construct;Bonham L.;Oncogene,1991

2. Paneth cell differentiation in the developing intestine of normal and transgenic mice;Bry L.;Proc. Natl. Acad. Sci. USA,1994

3. Differentiation of rat small intestinal epithelial cells by extracellular matrix;Carroll K. M.;Am. J. Physiol.,1988

4. Function of the homeodomain protein GHF1 in pituitary cell proliferation;Castrillo J.;Science,1991

5. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types;Cheng H.;Am. J. Anat.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3