Cleavage of RNA hairpins mediated by a developmentally regulated CCCH zinc finger protein

Author:

Bai C1,Tolias P P1

Affiliation:

1. Public Health Research Institute, New York, New York 10016, USA.

Abstract

Control of RNA turnover is a major, but poorly understood, aspect of gene regulation. In multicellular organisms, progress toward dissecting RNA turnover pathways has been made by defining some cis-acting sequences that function as either regulatory or cleavage targets (J. G. Belasco and G. Brawerman, Control of Messenger RNA Stability, 1993). However, the identification of genes encoding proteins that regulate or cleave target RNAs has been elusive (C. A. Beelman and R. Parker, Cell 81:79-183, 1995); this gap in knowledge has made it difficult to identify additional components of RNA turnover pathways. We have utilized a modified expression cloning strategy to identify a developmentally regulated gene from Drosophila melanogaster that encodes a RNase that we refer to as Clipper (CLP). Significant sequence matches to open reading frames encoding unknown functions identified from the Caenorhabditis elegans and Saccharomyces cerevisiae genome sequencing projects suggest that all three proteins are members of a new protein family conserved from lower eukaryotes to invertebrates. We demonstrate that a member of this new protein family specifically cleaves RNA hairpins and that this activity resides in a region containing five copies of a previously uncharacterized CCCH zinc finger motif. CLP's endoribonucleolytic activity is distinct from that associated with RNase A (P. Blackburn and S. Moore, p. 317-433, in P. D. Boyer, ed., The Enzymes, vol. XV, part B, 1982) and is unrelated to RNase III processing of rRNAs and tRNAs (J. G. Belasco and G. Brawerman, Control of Messenger RNA Stability, 1993, and S. A. Elela, H. Igel, and M. Ares, Cell 85:115-124, 1995). Our results suggest that CLP may function directly in RNA metabolism.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3