The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal

Author:

Grimes H L1,Chan T O1,Zweidler-McKay P A1,Tong B1,Tsichlis P N1

Affiliation:

1. Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.

Abstract

The Gfi-1 proto-oncogene is activated by provirus insertion in T-cell lymphoma lines selected for interleukin-2 (IL-2) independence in culture and in primary retrovirus-induced thymomas and encodes a nuclear, sequence-specific DNA-binding protein. Here we show that Gfi-1 is a position- and orientation-independent active transcriptional repressor, whose activity depends on a 20-amino-acid N-terminal repressor domain, coincident with a nuclear localization motif. The sequence of the Gfi-1 repressor domain is related to the sequence of the repressor domain of Gfi-1B, a Gfi-1-related protein, and to sequences at the N termini of the insulinoma-associated protein, IA-1, the homeobox protein Gsh-1, and the vertebrate but not the Drosophila members of the Snail-Slug protein family (Snail/Gfi-1, SNAG domain). Although not functionally characterized, these SNAG-related sequences are also likely to mediate transcriptional repression. Therefore, the Gfi-1 SNAG domain may be the prototype of a novel family of evolutionarily conserved repressor domains that operate in multiple cell lineages. Gfi-1 overexpression in IL-2-dependent T-cell lines allows the cells to escape from the G1 arrest induced by IL-2 withdrawal. Since a single point mutation in the SNAG domain (P2A) inhibits both the Gfi-1-mediated transcriptional repression and the G1 arrest induced by IL-2 starvation, we conclude that the latter depends on the repressor activity of the SNAG domain. Induction of Gfi-1 may therefore contribute to T-cell activation and tumor progression by repressing the expression of genes that inhibit cellular proliferation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3