Biogeochemical Conditions Favoring Magnetite Formation during Anaerobic Iron Reduction

Author:

Bell P. E.1,Mills A. L.1,Herman J. S.1

Affiliation:

1. Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22903

Abstract

Several anaerobic bacteria isolated from the sediments of Contrary Creek, an iron-rich environment, produced magnetite when cultured in combinations but not when cultured alone in synthetic iron oxyhydroxide medium. When glucose was added as a carbon source, the pH of the medium decreased (to 5.5) and no magnetite was formed. When the same growth medium without glucose was used, the pH increased (to 8.5) and magnetite was formed. In both cases, Fe 2+ was released into the growth medium. Geochemical equilibrium equations with E h and pH as master variables were solved for the concentrations of iron and inorganic carbon that were observed in the system. Magnetite was predicted to be the dominant iron oxide formed at high pHs, while free Fe 2+ or siderite were the dominant forms of iron expected at low pHs. Thus, magnetite formation occurs because of microbial alteration of the local E h and pH conditions, along with concurrent reduction of ferric iron (direct biological reduction or abiological oxidation-reduction reactions).

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3