Role of Capsular Colanic Acid in Adhesion of Uropathogenic Escherichia coli

Author:

Hanna Andrea1,Berg Michael23,Stout Valerie23,Razatos Anneta13

Affiliation:

1. Department of Chemical and Materials Engineering

2. Department of Microbiology

3. The Molecular and Cellular Biology Program, Arizona State University, Tempe, Arizona

Abstract

ABSTRACT Urinary tract infections are the most common urologic disease in the United States and one of the most common bacterial infections of any organ system. Biofilms persist in the urinary tract and on catheter surfaces because biofilm microorganisms are resistant to host defense mechanisms and antibiotic therapy. The first step in the establishment of biofilm infections is bacterial adhesion; preventing bacterial adhesion represents a promising method of controlling biofilms. Evidence suggests that capsular polysaccharides play a role in adhesion and pathogenicity. This study focuses on the role of physiochemical and specific binding interactions during adhesion of colanic acid exopolysaccharide mutant strains. Bacterial adhesion was evaluated for isogenic uropathogenic Escherichia coli strains that differed in colanic acid expression. The atomic force microscope (AFM) was used to directly measure the reversible physiochemical and specific binding interactions between bacterial strains and various substrates as bacteria initially approach the interface. AFM results indicate that electrostatic interactions were not solely responsible for the repulsive forces between the colanic acid mutant strains and hydrophilic substrates. Moreover, hydrophobic interactions were not found to play a significant role in adhesion of the colanic acid mutant strains. Adhesion was also evaluated by parallel-plate flow cell studies in comparison to AFM force measurements to demonstrate that prolonged incubation times alter bacterial adhesion. Results from this study demonstrate that the capsular polysaccharide colanic acid does not enhance bacterial adhesion but rather blocks the establishment of specific binding as well as time-dependent interactions between uropathogenic E. coli and inert substrates.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3