The expression pattern of the murine Hoxa-10 gene and the sequence recognition of its homeodomain reveal specific properties of Abdominal B-like genes

Author:

Benson G V1,Nguyen T H1,Maas R L1

Affiliation:

1. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

Abstract

Homeobox genes of the Abdominal B (AbdB) family constitute a distinct subset of vertebrate Hox genes. Analysis of the murine Hoxa-10 gene, one member of this family, revealed several properties specific to this class. Two transcripts of Hoxa-10, a10-1 and a10-2, encode homeodomain proteins of 55 kDa (399 amino acids) and 16 kDa (96 amino acids), respectively. These proteins have identical homeodomains and C-terminal regions encoded by a common 3' exon but differ significantly in the sizes of their N-terminal regions because of the usage of alternative 5' exons. The 5' exon of the a10-2 form is also present in transcripts of Hoxa-9, the next 3' gene, indicating that splicing can occur between adjacent AbdB Hox genes within a cluster. Both Hoxa-10 transcripts demonstrated identical patterns of expression in the posterior body and proximal limb bud, differentiating them from AbdB morphogenetic and regulatory transcripts and suggesting a role with other AbdB Hox genes in the patterning of these structures. Finally, a binding site selection identified the sequence AA(A/T)TTTTATTAC as the Hoxa-10 homeodomain consensus binding site, with a TTAT core sequence. Preferential recognition of a TTAT core therefore differentiates the AbdB class from Antennapedia (Antp) class gene products which bind a TAAT core. Thus, in vertebrates, structural similarities, coordinate transcriptional regulation, sites of expression, and binding site preferences all serve to distinguish AbdB from Antp Hox genes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3