HIV-1 reverse transcriptase stability correlates with Gag cleavage efficiency: reverse transcriptase interaction implications for modulating protease activation

Author:

Hsieh Shih-Han12,Yu Fu-Hsien12,Huang Kuo-Jung1,Wang Chin-Tien12ORCID

Affiliation:

1. Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan

2. Institute of Clinical Medicine, National Yang Ming Chiao Tung University , Taipei, Taiwan

Abstract

ABSTRACT Proteolytic processing of human immunodeficiency virus type 1 particles mediated by viral protease (PR) is essential for acquiring virus infectivity. Activation of PR embedded in Gag-Pol is triggered by Gag-Pol dimerization during virus assembly. We previously reported that amino acid substitutions at the RT tryptophan repeat motif destabilize virus-associated RT and attenuate the ability of efavirenz (EFV, an RT dimerization enhancer) to increase PR-mediated Gag cleavage efficiency. Furthermore, a single amino acid change at RT significantly reduces virus yields due to enhanced Gag cleavage. These data raise the possibility of the RT domain contributing to PR activation by promoting Gag-Pol dimerization. To test this hypothesis, we investigated the putative involvement of a hydrophobic leucine repeat motif (LRM) spanning RT L282 to L310 in RT/RT interactions. We found that LRM amino acid substitutions led to RT instability and that RT is consequently susceptible to degradation by PR. The LRM mutants exhibited reduced Gag cleavage efficiencies while attenuating the EFV enhancement of Gag cleavage. In addition, an RT dimerization-defective mutant, W401A, reduced enhanced Gag cleavage via a leucine zipper (LZ) motif inserted at the deleted Gag-Pol region. Importantly, the presence of RT and integrase domains failed to counteract the LZ enhancement of Gag cleavage. A combination of the Gag cleavage enhancement factors EFV and W402A markedly impaired Gag cleavage, indicating a disruption of W402A Gag-Pol dimerization following EFV binding to W402A Gag-Pol. Our results support the idea that RT modulates PR activation by affecting Gag-Pol/Gag-Pol interaction. IMPORTANCE A stable reverse transcriptase (RT) p66/51 heterodimer is required for HIV-1 genome replication in host cells following virus entry. The activation of viral protease (PR) to mediate virus particle processing helps viruses acquire infectivity following cell release. RT and PR both appear to be major targets for inhibiting HIV-1 replication. We found a strong correlation between impaired p66/51RT stability and deficient PR-mediated Gag cleavage, suggesting that RT/RT interaction is critical for triggering PR activation via the promotion of adequate Gag-Pol dimerization. Accordingly, RT/RT interaction is a potentially advantageous method for anti-HIV/AIDS therapy if it is found to simultaneously block PR and RT enzymatic activity.

Funder

National Science and Technology Council

Taipei Veterans General Hospital

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3