Baculovirus Vectors Elicit Antigen-Specific Immune Responses in Mice

Author:

Facciabene Andrea1,Aurisicchio Luigi1,La Monica Nicola1

Affiliation:

1. Istituto di Ricerche di Biologia Moleculare, 00040 Pomezia, Italy

Abstract

ABSTRACT To characterize the induction of antigen-specific immune response mediated by baculovirus, vectors expressing the E2 glycoprotein of hepatitis C virus or the carcinoembryonic antigen (CEA) under the control of the cytomegalovirus immediate-early promoter-enhancer were constructed. Additionally, a baculovirus vector encoding the E2 glycoprotein (Bac-G-E2) and expressing vesicular stomatitis virus glycoprotein (VSV-G) in the viral envelope was generated by inserting the VSV-G coding sequence downstream of the polyhedrin promoter. Mice were subjected to intramuscular, intranasal, or subcutaneous inoculations with Bac-E2 and the cellular immune response was monitored by ELISPOT and intracellular staining. Additionally, humoral response was monitored by titrating anti-E2 antibodies. Induction of a measurable anti-E2 T-cell response was observed only after intramuscular injection and was predominantly CD8 + specific. The immunogenic properties of baculovirus as vaccine vector were not restricted to E2 because a CEA-specific CD4 + T-cell response was observed upon intramuscular injection of Bac-CEA. Interestingly, the Bac-G-E2 vector was shown to be a more efficient immunogen than Bac-E2, in view of the 10-fold difference in the minimal dose required to elicit a measurable T-cell response upon intramuscular injection. Induction of inflammatory cytokines such as gamma interferon, tumor necrosis factor alpha, and interleukin-6 was detected as early as 6 h postinjection of Bac-G-E2. Most importantly, both vectors elicited CD8 + T cells with effector function capable of lysing target cells loaded with a hepatitis C virus-specific epitope. Additionally, enhanced NK cytolytic activity was detected in immunized mice. Thus, these results further demonstrate that baculovirus may be considered a useful vector for gene therapy.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3