Affiliation:
1. Department of Microbiology and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, California 90095
Abstract
ABSTRACT
We previously described
Escherichia coli
mutator tRNAs that insert glycine in place of aspartic acid and postulated that the elevated mutation rate results from generating a mutator polymerase. We suggested that the proofreading subunit of polymerase III, ɛ, is a likely target for the aspartic acid-to-glycine change that leads to a lowered fidelity of replication, since the altered ɛ subunits resulting from this substitution (approximately 1% of the time) are sufficient to create a mutator effect, based on several observations of
mutD
alleles. In the present work, we extended the study of specific
mutD
alleles and constructed 16 altered
mutD
genes by replacing each aspartic acid codon, in series, with a glycine codon in the
dnaQ
gene that encodes ɛ. We show that three of these genes confer a strong mutator effect. We have also looked for new mutator tRNAs and have found one: a glycine tRNA that inserts glycine at histidine codons. We then replaced each of the seven histidine codons in the
mutD
gene with glycine codons and found that in two cases, a strong mutator phenotype results. These findings are consistent with the ɛ subunit playing a major role in the mutator effect of misreading tRNAs.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献