Mutations in active-site residues of the uracil-DNA glycosylase encoded by vaccinia virus are incompatible with virus viability

Author:

Ellison K S1,Peng W1,McFadden G1

Affiliation:

1. Department of Biochemistry, University of Alberta, Edmonton, Canada.

Abstract

The D4R gene of vaccinia virus encodes a functional uracil-DNA glycosylase that is essential for viral viability (D. T. Stuart, C. Upton, M. A. Higman, E. G. Niles, and G. McFadden, J. Virol. 67:2503-2513, 1993), and a D4R mutant, ts4149, confers a conditional lethal defect in viral DNA replication (A. K. Millns, M. S. Carpenter, and A. M. DeLange, Virology 198:504-513, 1994). The mutant ts4149 protein was expressed in vitro and assayed for uracil-DNA glycosylase activity. Less than 6% of wild-type activity was observed at permissive temperatures, but the ts4149 protein was completely inactive at the nonpermissive temperature. Mutagenesis of the ts4149 gene back to wild type (Arg-179-->Gly) restored full activity. The ts4149 protein was considerably reduced in lysates of cells infected at the permissive temperature, and its activity was undetectable, even in the presence of the uracil glycosylase inhibitor protein, which inhibits the host uracil-DNA glycosylases but not that of vaccinia virus. Thus the ts4149 protein is thermolabile, correlating uracil removal with vaccinia virus DNA replication. Three active-site amino acids of the vaccinia virus uracil-DNA glycosylase were mutated (Asp-68-->Asn, Asn-120-->Val, and His-181-->Leu), producing proteins that were completely defective in uracil excision but still retained the ability to bind DNA. Each mutated D4R gene was transfected into vaccinia virus ts4149-infected cells in order to assess the recombination events that allowed virus survival at 40 degrees C. Genetic analysis and sequencing studies revealed that the only viruses to survive were those in which recombination eliminated the mutant locus. We conclude that the uracil cleavage activity of the D4R protein is essential for its function in vaccinia virus DNA replication, suggesting that the removal of uracil residues plays an obligatory role.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference55 articles.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3