Detection of Dengue Virus Replication in Peripheral Blood Mononuclear Cells from Dengue Virus Type 2-Infected Patients by a Reverse Transcription-Real-Time PCR Assay

Author:

Wang Wei-Kung1,Sung Tzu-Ling1,Tsai Yu-Chen1,Kao Chuan-Liang2,Chang Shu-Mei3,King Chwan-Chuen4

Affiliation:

1. Institute of Microbiology

2. Graduate Institute of Medical Technology

3. National Taiwan University, Taipei, and The Yuan General Hospital, Kaohsiung, Taiwan

4. College of Medicine, and Institute of Epidemiology, College of Public Health

Abstract

ABSTRACT While dengue virus is thought to replicate in mononuclear phagocytic cells in vivo, attempts to detect it in peripheral blood mononuclear cells (PBMC) by virus isolation or antigen detection have had variable and generally low rates. In this study, we developed a reverse transcription (RT)-real-time PCR assay to quantify positive- and negative-sense RNA of dengue virus type 2 within the cells. The assay includes an RT step using either sense or antisense primer followed by a real-time PCR step using the designed primers and probe, which target a capsid region highly conserved in dengue virus type 2 strains. It can be used to monitor the dynamic change of intracellular dengue virus RNA species during the course of infection. When this assay is employed in quantification of dengue virus RNA species in PBMC from 10 patients infected with dengue virus type 2, both positive- and negative-sense dengue RNA can be detected, indicating that dengue virus is actively replicating in PBMC in vivo. Moreover, the amounts of negative-sense dengue virus RNA in PBMC correlate very well with the viral load of dengue virus in plasma, suggesting that quantification of negative-sense dengue virus RNA in PBMC may provide another indicator of dengue virus replication in vivo. Use of this convenient, sensitive, and accurate method of quantification in clinical samples from patients with different disease severity would further our understanding of the pathogenesis of dengue.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3