Respiration supports intraphagosomal filamentation and escape of Candida albicans from macrophages

Author:

Case Nicola T.1ORCID,Westman Johannes2,Hallett Michael T.3,Plumb Jonathan2,Farheen Aiman1,Maxson Michelle E.4,MacAlpine Jessie1,Liston Sean D.1ORCID,Hube Bernhard56ORCID,Robbins Nicole1ORCID,Whitesell Luke1,Grinstein Sergio278,Cowen Leah E.1ORCID

Affiliation:

1. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada

2. Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada

3. Department of Biochemistry, Western University, London, Ontario, Canada

4. Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada

5. Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany

6. Institute of Microbiology, Friedrich Schiller University, Jena, Germany

7. Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada

8. Keenan Research Center of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada

Abstract

ABSTRACT For the human fungal pathogen Candida albicans , metabolic flexibility and the ability to transition between yeast and filamentous growth states are key virulence traits that enable disease in the host. These traits are particularly important during the interaction of C. albicans with macrophages, where the fungus must utilize multiple alternative carbon sources to survive after being phagocytosed, and filamentation is coupled to fungal escape and immune cell death. Here, we employed functional genomic screening of conditional-expression mutants covering >50% of the C. albicans genome to identify genes selectively required for filamentation inside macrophages. Through manual and machine learning-based image analyses, we uncovered a role for the mitochondrial ribosome, respiration, and the SNF1 AMP-activated kinase complex in governing filamentous growth within the phagosome, suggesting that C. albicans relies on respiration to evade the antifungal activities of macrophages. We demonstrate that downregulating the expression of these genes reduces ATP levels and impedes filamentation as well as growth under monoculture conditions in medium lacking glucose. In co-culture with physiological glucose concentration, downregulation of genes involved in mitochondrial function and respiration prevented C. albicans from expanding within the phagosome, escaping, and inducing immune cell death. Together, our work provides new insights into the impact of metabolism on the interaction between C. albicans and macrophages, highlighting respiration and the SNF1 AMP-activated kinase as key effectors of C. albicans metabolic flexibility and filamentation within phagocytes. IMPORTANCE Candida albicans is a leading human fungal pathogen that often causes life-threatening infections in immunocompromised individuals. The ability of C. albicans to transition between yeast and filamentous forms is key to its virulence, and this occurs in response to many host-relevant cues, including engulfment by host macrophages. While previous efforts identified C. albicans genes required for filamentation in other conditions, the genes important for this morphological transition upon internalization by macrophages remained largely enigmatic. Here, we employed a functional genomic approach to identify genes that enable C. albicans filamentation within macrophages and uncovered a role for the mitochondrial ribosome, respiration, and the SNF1 AMP-activated kinase complex. Additionally, we showed that glucose uptake and glycolysis by macrophages support C. albicans filamentation. This work provides insights into the metabolic dueling that occurs during the interaction of C. albicans with macrophages and identifies vulnerabilities in C. albicans that could serve as promising therapeutic targets.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

German Research Foundation Priority Programme

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3