Interferon-Dependent Immunity Is Essential for Resistance to Primary Dengue Virus Infection in Mice, Whereas T- and B-Cell-Dependent Immunity Are Less Critical

Author:

Shresta Sujan1,Kyle Jennifer L.12,Snider Heidi M.1,Basavapatna Manasa1,Beatty P. Robert3,Harris Eva1

Affiliation:

1. Division of Infectious Diseases, School of Public Health

2. Graduate Group in Microbiology

3. Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720

Abstract

ABSTRACT Dengue virus (DEN) causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome, which are major public health problems worldwide. The immune factors that control DEN infection or contribute to severe disease are neither well understood nor easy to examine in humans. In this study, we used wild-type and congenic mice lacking various components of the immune system to study the immune mechanisms in the response to DEN infection. Our results demonstrate that alpha/beta interferon (IFN-α/β) and IFN-γ receptors have critical, nonoverlapping functions in resolving primary DEN infection. Furthermore, we show that IFN-α/β receptor-mediated action limits initial DEN replication in extraneural sites and controls subsequent viral spread into the central nervous system (CNS). In contrast, IFN-γ receptor-mediated responses seem to act at later stages of DEN disease by restricting viral replication in the periphery and eliminating virus from the CNS. Mice deficient in B, CD4 + T, or CD8 + T cells had no increased susceptibility to DEN; however, RAG mice (deficient in both B and T cells) were partially susceptible to DEN infection. In summary, (i) IFN-α/β is critical for early immune responses to DEN infection, (ii) IFN-γ-mediated immune responses are crucial for both early and late clearance of DEN infection in mice, and (iii) the IFN system plays a more important role than T- and B-cell-dependent immunity in resistance to primary DEN infection in mice.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3