Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12

Author:

Schoenlein P V1,Roa B B1,Winkler M E1

Affiliation:

1. Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.

Abstract

We report the DNA sequence and in vivo transcription start of pdxB, which encodes a protein required for de novo biosynthesis of pyridoxine (vitamin B6). The DNA sequence confirms results from previous minicell experiments showing that pdxB encodes a 41-kilodalton polypeptide. RNase T2 mapping of in vivo transcripts and corroborating experiments with promoter expression vector pKK232-8 demonstrated that the pdxB promoter shares its -10 region with an overlapping, divergent promoter. Thus, pdxB must be the first gene in the complex pdxB-hisT operon. The steady-state transcription level from these divergent promoters, which probably occlude each other, is approximately equal in bacteria growing in rich medium at 37 degrees C. The divergent transcript could encode a polypeptide whose amino-terminal domain is rich in proline and glutamine residues. Similarity searches of protein data bases revealed a significant number of amino acid matches between the pdxB gene product and D-3-phosphoglycerate dehydrogenase, which is encoded by serA and catalyzes the first step in the phosphorylated pathway of serine biosynthesis. FASTA and alignment score analyses indicated that PdxB and SerA are indeed homologs and share a common ancestor. The amino acid alignment between PdxB and SerA implies that PdxB is a 2-hydroxyacid dehydrogenase and suggests possible NAD+, substrate binding, and active sites of both enzymes. Furthermore, the fact that 4-hydroxythreonine, a probable intermediate in pyridoxine biosynthesis, is structurally related to serine strongly suggests that the pdxB gene product is erythronate-4-phosphate dehydrogenase. The homology between PdxB and SerA provides considerable support for Jensen's model of enzyme recruitment as the basis for the evolution of different biosynthetic pathways.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference48 articles.

1. Structural features of the hisT operon of Escherichia coli K-12;Arps P. J.;Nucleic Acids Res.,1985

2. An unusual genetic link between vitamin B6 biosynthesis and tRNA pseudouridine modification in Escherichia coli K-12;Arps P. J.;J. Bacteriol.,1987

3. Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette;Arps P. J.;J. Bacteriol.,1987

4. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1987. Current protocols in molecular biology. John Wiley & Sons Inc. New York.

5. Bachmann B. J. 1987. Linkage map of Escherichia coli K-12 p. 395-411. In F. C. Neidhardt (ed.) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3