Switching of Flagellar Motility in Helicobacter pylori by Reversible Length Variation of a Short Homopolymeric Sequence Repeat in fliP , a Gene Encoding a Basal Body Protein

Author:

Josenhans Christine12,Eaton Kathryn A.3,Thevenot Tracy3,Suerbaum Sebastian12

Affiliation:

1. Institute of Hygiene and Microbiology, University of Würzburg, D-97080 Würzburg,1 and

2. Department of Medical Microbiology, Ruhr-Universität Bochum, D-44780 Bochum,2 Germany, and

3. Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio3

Abstract

ABSTRACT The genome of Helicobacter pylori contains numerous simple nucleotide repeats that have been proposed to have regulatory functions and to compensate for the conspicuous dearth of master regulatory pathways in this highly host-adapted bacterium. H. pylori strain 26695, whose genomic sequence was determined by The Institute for Genomic Research (TIGR), contains a repeat of nine cytidines in the fliP flagellar basal body gene that splits the open reading frame in two parts. In this work, we demonstrate that the 26695 C9 strain with a split fliP gene as sequenced by TIGR was nonflagellated and nonmotile. In contrast, earlier isolates of strain 26695 selected by positive motility testing as well as pig-passaged derivatives of 26695 were all flagellated and highly motile. All of these motile strains had a C 8 repeat and consequently a contiguous fliP reading frame. By screening approximately 50,000 colonies of 26695 C9 for motility in soft agar, a motile revertant with a C 8 repeat could be isolated, proving that the described switch is reversible. The fliP genes of 20 motile clinical H. pylori isolates from different geographic regions possessed intact fliP genes with repeats of eight cytidines or the sequence CCCCACCC in its place. Isogenic fliP mutants of a motile, C 8 repeat isolate of strain 26695 were constructed by allelic exchange mutagenesis and found to be defective in flagellum biogenesis. Mutants produced only small amounts of flagellins, while the transcription of flagellin genes appeared unchanged. These results strongly suggest a unique mechanism regulating motility in H. pylori which relies on slipped-strand mispairing-mediated mutagenesis of fliP .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3