Electroanalysis of tert-butylhydroquinone in food products using a paste electrode enlarged with single wall carbon nanotubes as catalyst

Author:

Dehdashtian NiloofarORCID,Shahidi Seyed-AhmadORCID,Ghorbani-HasanSaraei AzadeORCID,Hosseini ShabnamORCID,Ahmadi MohammadORCID

Abstract

In this study, an electrochemical sensor was introduced as a simple and fast electro­analytical tool to monitor and sensing of tert-butylhydroquinone (TBHQ) in food products. The suggested electrochemical sensor is fabricated by modification of paste electrode (PE) by single wall carbon nanotubes (SWCNTs) as nanocatalyst. The oxidation current of TBHQ was improved by about 2.62 times and its oxidation potential was reduced by about 50 mV after using SWCNTs as conductive catalyst on a carbon paste matrix. The oxidation current of TBHQ showed a linear dynamic range of 0.05 to 390 µM in the sensing process using SWCNTs/PE as the electroanalytical sensor. On the other hand, SWCNTs/PE successfully monitored TBHQ with a detection limit of 10 nM at optimum conditions. The real sample analysis data clearly showed a recovery range of 97.2 to 104.3 %, which is very interesting for a new analytical tool in the food-sensing process.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3