Fabrication of superhydrophobic surfaces by laser surface texturing and autoxidation

Author:

Kumar VijayORCID,Verma RajeevORCID,Bairwa Harish Kumar

Abstract

The creation of superhydrophobic surfaces (SHS) has received exceptional thought from the entire research community due to its notable application in varied fields such as anti-icing, self-cleaning, drag reduction, anti-bacterial, and oil-water separation. The super­hy­drophobic (SH) conditions for a surface can be attained through the consolidation of a low surface energy surface with appropriate micro/nano-surface roughness through texturing. Motivated by the SH nature of lotus leaf and petal effect, microstructures have been prepared in this work on a metal surface by a fiber laser marking machine at 35 W. The textured surfaces with a different pitch to diameter (p/d) ratio (2.0-0.70) have been turned into hydrophobic and finally SH, after storing in an ambient environment for a few days due to oxide layer deposition on the textured surface. In this study, the maximum contact angle achieved by textured geometry after 30 days of auto-oxidation was 158.6 o. Further, test results showed that the fabricated surfaces have a high potential to maintain their SH nature even after the harsh condition of applications.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3