Affiliation:
1. African Centre of Excellence in Data Science, College of Business and Economics, University of Rwanda, Kigali, Rwanda
2. Department of Economics, College of Business and Economics University of Rwanda, Kigali, Rwanda
Abstract
This research examines 145 key papers from 1979 to 2020 in order to gain a better sense of how tourism demand forecasting techniques have changed over time. The three types of forecasting models are econometric, time series, and artificial intelligence (AI) models. Econometric and time series models that were already popular in 2005 maintained their popularity, and were increasingly used as benchmark models for forecasting performance assessment and comparison with new models. In the last decade, AI models have advanced at an incredible rate, with hybrid AI models emerging as a new trend. In addition, some new developments in the three categories of models, such as mixed frequency, spatial regression, and combination and hybrid models have been introduced. The main conclusions drawn from historical comparisons forecasting methods are that forecasting models have become more diverse, that these models have been merged, and that forecasting accuracy has improved. Given the complexities of predicting tourism demand, there is no single approach that works well in all circumstances, and forecasting techniques are still evolving.
Subject
Tourism, Leisure and Hospitality Management,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献