Obtaining nanoparticles of Cu2O by means of a pulsed discharge of CH3CH2OH-N2

Author:

Gonzalez Marcos C.,Reyes Pedro GuillermoORCID,Gomez AaronORCID,Martínez HoracioORCID,Castrejon Victor Hugo

Abstract

CH3CH2OH-N2 plasma mixture was used to synthesize cuprous oxide (Cu2O) micro-particles in a pulsed DC sputtering system, using a ethanol pressure of 1.5 Torr and a current of 400 mA at a frequency of 30 kHz. The plasma mixture was used successfully to obtain the micro-particles of Cu2O using a copper (Cu) target and a stainless steel substrate. The Cu2O products are characterized by the scanning electron microscope (SEM), the results show that the morphology of the Cu2O microparticles have a spherical shape which are randomly distributed on the stainless steel substrate. Raman results show that from the CH3CH2OH-N2 plasma mixture it is possible to obtain one of the Cu oxidation phases which corresponds to Cu2O due to the fact that within the sample analyzed by means of Raman it is possible to observe only the peaks that correspond to the Cu2O phase. The analysis by energy dispersive spectroscopy (EDS) serves to determine the stoichiometric balance present in the substrate, from which the presence of the characteristic peaks of stainless steel was confirmed, along with the characteristic peaks of Cu and O which exhibit an atomic ratio of 2:1 respectively. Atomic force microscopy (AFM) was used to again determine the morphology of the microparticles, finding a spherical morphology. In addition, the value of roughness and grain size was determined, finding values of 20 nm and 45 nm respectively. The images 3-D show the presence of peaks and valleys within the substrate and an non-homogeneous distribution of spherical micro-particles on the surface of the stainless steel.

Publisher

Sociedad Mexicana de Fisica A C

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3