Modeling air pressure propagation through Wind Cave and Jewel Cave: How can air pressure signals inside barometric caves be predicted from surface pressure measurements?

Author:

Gomell Annika1,Pflitsch Andreas1

Affiliation:

1. Ruhr-Universitat Bochum, Germany

Abstract

Recent speleoclimatological research has shed new light on air pressure dynamics inside barometric caves by identifying pressure-modifying processes and resulting systematic differences between cave and surface air pressure. Based on these new findings, a multi- step quantitative model is developed and explored to predict air pressure inside Wind Cave and Jewel Cave – two major barometric cave systems in the Black Hills of South Dakota, USA – from external surface measurements. Therefore, each identified speleoclimatological pressure process is translated into a mathematical operation. Model evaluation based on Pearson correlation and mean (absolute) deviation between model outputs and control measurements yields good to excellent results: Depending on the location, the presented model predicts 99.2% to 99.7% of measured air pressure inside Wind Cave compared to 90.3% and 99.4% inside Jewel Cave, thus proving that the previously identified and now modeled processes adequately and comprehensively describe the speleoclimatological pressure dynamics inside barometric caves. Slightly weaker model performance is observed at the lower elevator level inside Wind Cave and at Deep Camp inside Jewel Cave due to irregular pressure disturbances caused by elevator operation and unique morphological features in the deeper parts of Jewel Cave, respectively. Comparative spatial analyses of model constants and model accuracies at all investigated locations reveal significant differences in pressure patterns between the caves, thus demonstrating the effect of morphological characteristics on air pressure propagation and resulting modifications. The findings also support earlier research in Wind Cave and Jewel Cave as they provide speleoclimatological background for previously observed differences in airflow dynamics between both caves. Therefore, this study presents an important contribution to understanding the complex speleoclimatology of barometric caves.

Publisher

University of South Florida Libraries

Subject

Earth-Surface Processes,Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3