Time Series Classification for Portable Medical Devices

Author:

Zhong Zhaoyi,Sun Le,Subramani Sudha,Peng Dandan,Wang Yilin

Abstract

INTRODUCTION: With the continuous progress of the medical Internet of Things, intelligent medical wearable devices are also gradually mature. Among them, medical wearable devices for arrhythmia detection have broad application prospects. Arrhythmia is a common cardiovascular disease. Arrhythmia causes millions of deaths every year and is one of the most noteworthy diseases. Medical mobile information systems (MMIS) provide many ECG signals, which can be used to train deep models to detect arrhythmia automatically. OBJECTIVES: Using deep models to detect arrhythmia is a research hot spot. However, the current algorithms for arrhythmia detection lack of attention to the unsupervised depth model. And they usually build a large comprehensive model for all users for arrhythmia detection, which has low flexibility and cannot extract personalized features from users. Therefore, this paper proposes a personalized arrhythmia detection system based on attention mechanism called personAD. METHODS: The personAD contains four modules: (1) Preprocessing module; (2) Training module; (3) Arrhythmia detection module and (4) User registration module. The personAD trains a separate autoencoder for each user to detect personalized arrhythmia. Using autoencoder to detect arrhythmia can avoid the imbalance of training data. The autoencoder combines a convolutional network and two attention mechanisms. RESULTS: Based on the results on MIT-BIH Arrhythmia Database, we can find that our arrhythmia detection system achieve 98.03%  and 99.32%  respectively. CONCLUSION: The personAD can effectively detect arrhythmia in ECG signals. The personAD has higher flexibility, and can easily modify the autoencoders for detecting arrhythmia for users.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DTT: A Dual-domain Transformer model for Network Intrusion Detection;ICST Transactions on Scalable Information Systems;2024-05-06

2. Fast Lung Image Segmentation Using Lightweight VAEL-Unet;ICST Transactions on Scalable Information Systems;2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3