Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor

Author:

Kim Soo-Hyun,Turnbull Jeremy,Guimond Scott

Abstract

Extracellular matrices (ECM) are secreted molecules that constitute the cell microenvironment, composed of a dynamic and complex array of glycoproteins, collagens, glycosaminoglycans and proteoglycans. ECM provides the bulk, shape and strength of many tissues in vivo, such as basement membrane, bone and cartilage. In vitro, most animal cells can only grow when they are attached to surfaces through ECM. ECM is also the substrate for cell migration. However, ECM provides much more than just mechanical and structural support, with implications in developmental patterning, stem cell niches and cancer. ECM imparts spatial context for signalling events by various cell surface growth factor receptors and adhesion molecules such as integrins. The external physical properties of ECM may also have a role in the signalling process. ECM molecules can be flexible and extendable, and mechanical tension can expose cryptic sites, which could further interact with growth factors or their receptors. ECM proteins and structures can determine the cell behaviour, polarity, migration, differentiation, proliferation and survival by communicating with the intracellular cytoskeleton and transmission of growth factor signals. Integrins and proteoglycans are the major ECM adhesion receptors which cooperate in signalling events, determining the signalling outcomes, and thus the cell fate. This review focuses on the emerging concept of spatial cell biology of ECM, especially the current understanding of integrins and heparan sulphate proteoglycans as the essential cellular machineries that sense, integrate and respond to the physical and chemical environmental information either by directly connecting with the local adhesion sites or by regulating global cellular processes through growth factor receptor signalling pathways, leading to the integration of both external and internal signals in space and time.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 901 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3