BMP4 promotes mouse iPS cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2

Author:

Yang Shi,Yuan Qingqing,Niu Minghui,Hou Jingmei,Zhu Zijue,Sun Min,Li Zheng,He Zuping

Abstract

Generation of male germ cells from pluripotent cells could provide male gametes for treating male infertility and offer an ideal model for unveiling molecular mechanisms of spermatogenesis. However, the influence and exact molecular mechanisms, especially downstream effectors of BMP4 signaling pathways, in male germ cell differentiation of the induce pluripotent stem (iPS) cells, remain unknown. This study was designed to explore the role and mechanism of BMP4 signaling in the differentiation of mouse iPS cells to male germ cells. Embryoid body (EB) formation and recombinant BMP4 or Noggin were utilized to evaluate the effect of BMP4 on male germ cell generation from mouse iPS cells. Germ cell-specific genes and proteins as well as the downstream effectors of BMP4 signaling pathway were assessed using real-time PCR and Western blots. We found that BMP4 ligand and its multiple receptors, including BMPR1a, BMPR1b and BMPR2, were expressed in mouse iPS cells. Real-time PCR and Western blots revealed that BMP4 could upregulate the levels of genes and proteins for germ cell markers in iPS cells-derived EBs, whereas Noggin decreased their expression in these cells. Moreover, Smad1/5 phosphorylation, Gata4 transcription and the transcripts of Id1 and Id2 were enhanced by BMP4 but decreased when exposed to Noggin. Collectively, these results suggest that BMP4 promotes the generation of male germ cells from iPS cells via Smad1/5 pathway and the activation of Gata4, Id1 and Id2. This study thus offers novel insights into molecular mechanisms underlying male germ cell development.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3