Vascular endothelial growth factor A: just one of multiple mechanisms for sex-specific vascular development within the testis?

Author:

Sargent Kevin M,McFee Renee M,Spuri Gomes Renata,Cupp Andrea S

Abstract

Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and induce seminiferous cord formation. Manyin vitroexperiments have demonstrated that vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures impaired vascular development and seminiferous cord formation. However,in vivomodels using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells (pDmrt1-Cre;Vegfa−/−); Sertoli and Leydig cells (Amhr2-Cre;Vegfa−/−) or Sertoli cells (Amh-Cre;Vegfa−/−andSry-Cre;Vegfa−/−) displayed testes with observably normal cords and vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse. AVegfasignal transduction array was employed on postnatal testes fromSry-Cre;Vegfa−/−versus controls.Ptgs1(Cox1) was the only upregulated gene (fivefold). COX1 stimulates angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to maintain SOX9 expression. Multiple independent mechanism that induce vascular development in the testis may contribute to and safeguard the sex-specific vasculature development responsible for inducing seminiferous cord formation, thus ensuring appropriate testis morphogenesis in the male.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Reference150 articles.

1. Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature

2. Adams IR McLaren A 2002 Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129 1155–1164.

3. Adini A Kornaga T Firoozbakht F Benjamin LE 2002 Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Research 62 2749–2752.

4. Defective Mesonephric Cell Migration Is Associated with Abnormal Testis Cord Development in C57BL/6J XYMus domesticus Mice

5. Role of MAPKs in development and differentiation: lessons from knockout mice

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3