Hepatic nNOS impaired hepatic insulin sensitivity through the activation of p38 MAPK

Author:

Zhao Tianxue1,Li Qian1,Mao Qianyun1,Mu Kaida1,Wang Chen1

Affiliation:

1. 1Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China

Abstract

Neuronal nitric oxide synthase (nNOS) interacts with its adaptor protein NOS1AP through its PZD domain in the neurons. Previously, we had reported that NOS1AP enhanced hepatic insulin sensitivity through its PZD-binding domain, which suggested that nNOS might mediate the effect of NOS1AP. This study aimed to examine the role and underlying mechanisms of nNOS in regulating hepatic insulin sensitivity. nNOS co-localized with NOS1AP in mouse liver. The overexpression of NOS1AP in mouse liver decreased the level of phosphorylated nNOS (p-nNOS (Ser1417)), the active form of nNOS. Conversely, the liver-specific deletion of NOS1AP increased the level of p-nNOS (Ser1417). The overexpression of nNOS in the liver of high-fat diet-induced obese mice exacerbated glucose intolerance, enhanced intrahepatic lipid accumulation, decreased glycogen storage, and blunted insulin-induced phosphorylation of IRbeta and Akt in the liver. Similarly, nNOS overexpression increased triglyceride production, decreased glucose utilization, and downregulated insulin-induced expression of p-IRbeta, p-Akt, and p-GSK3beta in the HepG2 cells. In contrast, treatment with Nω-propyl-L-arginine (L-NPA), a selective nNOS inhibitor, improved glucose tolerance and upregulated insulin-induced phosphorylation of IRbeta and Akt in the liver of ob/ob mice. Furthermore, overexpression of nNOS increased p38MAPK phosphorylation in the HepG2 cells. In contrast, inhibition of p38MAPK with SB203580 significantly reversed the nNOS-induced inhibition of insulin-signaling activity (all P < 0.05). This indicated that hepatic nNOS inhibited the insulin-signaling pathway through the activation of p38MAPK. These findings suggest that nNOS is involved in the development of hepatic insulin resistance and that nNOS might be a potential therapeutic target for diabetes.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3