Sodium vitamin C transporter 2 orchestrates lactate metabolism in mouse Sertoli cells

Author:

Gao Guozheng1,Zhao Yong2,Wang Ke2,Wang Fang1

Affiliation:

1. 1Center of Reproductive Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, People’s Republic of China

2. 2Center of Assisted Reproductive Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China

Abstract

Transportation of vitamin C (also called ascorbic acid (AA)), an important water-soluble antioxidant and cofactor in testis, requires glucose transporter family (GLUTs) and sodium/vitamin C cotransporter family (SVCT1 and SVCT2). There is so far scant information vis-à-vis the functional roles of SVCTs in testis, although they possess higher affinity for transportation of AA compared to GLUTs. To analyze the biological effects of SVCT2 in testis, we assessed testicular expression of SVCT2 in different experimental settings and the effect of SVCT2 ablation on spermatogenesis. Persistent expression of SVCT2 was shown in the mouse testis at different stages of postnatal development, demonstrated on day 14 of testicular development in mice consistent with the appearance of pachytene spermatocytes during the first wave of spermatogenesis. Testicular expression of SVCT2 was enriched in the cytoplasm of murine Sertoli cells (SCs). We then showed that in vivo inhibition of SVCT2 in mouse testis significantly impaired male fertility by causing oligozoospermia and asthenospermia, which mainly stemmed from a deficiency in lactate production. By generating the TM4SVCT2−/− cells and by profiling TM4SVCT2−/− cells with a constitutively activated HIF-1α mutant, we demonstrated that SVCT2 deficiency led to impaired lactate synthesis and reduced expression of Ldha mRNA in SCs. Mechanistically, ablation of SVCT2 resulted in ubiquitination and subsequent degradation of HIF-1α protein in the FSH-stimulated SCs. Collectively, our data document a novel testicular site of action of SVCT2 in the control of lactate synthesis by SCs, probably via ubiquitination-dependent regulation of HIF-1α stability.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3