Role of serum- and glucocorticoid-inducible kinase 1 in the regulation of hepatic gluconeogenesis

Author:

Xu Zhaoqian122,Wang Yiru32,Liu Qianqian12,Wang Shushu12,Sheng Chunxiang12,Chen Junmin14,Tan Jialin12,Wang Xiao12,Shao Li3,Zhou Libin12ORCID

Affiliation:

1. Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

3. Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

4. Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Abstract

Excessive hepatic gluconeogenesis partially accounts for the occurrence of type 2 diabetes mellitus. Serum- and glucocorticoid inducible-kinase 1 (SGK1) is linked to the development of metabolic syndrome, such as obesity, hypertension, and hyperglycemia. However, the regulatory role of SGK1 in glucose metabolism of liver remains uncertain. Our microarray analysis showed that SGK1 expression was strongly induced by 8-Br-cAMP and suppressed by metformin in primary mouse hepatocytes. Hepatic SGK1 expression was markedly increased in obese and diabetic mice. Metformin treatment decreased hepatic SGK1 expression levels in db/db mice. Inhibition or knockdown of SGK1 suppressed gluconeogenesis in primary mouse hepatocytes, with decreased expressions of key gluconeogenic genes. Furthermore, SGK1 silencing in liver decreased hepatic glucose production in C57BL/6 mice. Knockdown of SGK1 had no impact on CREB phosphorylation level but increased AKT and FoxO1 phosphorylation levels with decreased expressions of transcription factors including FoxO1 and hepatocyte nuclear factors. Adenovirus-mediated expression of dominant-negative AMPK antagonized metformin-suppressed SGK1 expression induced by 8-Br-cAMP. These findings demonstrate that hepatic specific silence of SGK1 might be a potential therapeutic strategy for type 2 diabetes.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Reference57 articles.

1. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals;Altarejos,2011

2. Insights into transcriptional regulation of hepatic glucose production;Anyamaneeratch,2015

3. Diabetes mellitus and the beta cell: the last ten years;Ashcroft,2012

4. Diabetes mellitus and genetically programmed defects in beta-cell function;Bell,2001

5. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor;Brunet,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3