A neural network-based algorithm for the reconstruction and filtering of single particle trajectory in magnetic particle tracking

Author:

Prashanth Mohit1ORCID,Du Pan2ORCID,Wang Jian-xun2ORCID,Wu Huixuan3ORCID

Affiliation:

1. Aerospace Engineering, University of Kansas 1 , Lawrence, Kansas 66045, USA

2. Department of Aerospace and Mechanical Engineering, University of Notre Dame 2 , Notre Dame, Indiana 46556, USA

3. Mechanical Engineering Department, Florida State University 3 , Tallahassee, Florida 32310, USA

Abstract

Magnetic particle tracking (MPT) is a recently developed non-invasive measurement technique that has gained popularity for studying dense particulate or granular flows. This method involves tracking the trajectory of a magnetically labeled particle, the field of which is modeled as a dipole. The nature of this method allows it to be used in opaque environments, which can be highly beneficial for the measurement of dense particle dynamics. However, since the magnetic field of the particle used is weak, the signal-to-noise ratio is usually low. The noise from the measuring devices contaminates the reconstruction of the magnetic tracer’s trajectory. A filter is then needed to reduce the noise in the final trajectory results. In this work, we present a neural network-based framework for MPT trajectory reconstruction and filtering, which yields accurate results and operates at very high speed. The reconstruction derived from this framework is compared to the state-of-the-art extended Kalman filter-based reconstruction.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3