Physics and applications of dusty plasmas: The Perspectives 2023

Author:

Beckers J.1ORCID,Berndt J.2ORCID,Block D.3ORCID,Bonitz M.4ORCID,Bruggeman P. J.5ORCID,Couëdel L.67ORCID,Delzanno G. L.8ORCID,Feng Y.9ORCID,Gopalakrishnan R.10ORCID,Greiner F.13ORCID,Hartmann P.11ORCID,Horányi M.12ORCID,Kersten H.3ORCID,Knapek C. A.13ORCID,Konopka U.14ORCID,Kortshagen U.5ORCID,Kostadinova E. G.14ORCID,Kovačević E.2ORCID,Krasheninnikov S. I.15ORCID,Mann I.16ORCID,Mariotti D.17ORCID,Matthews L. S.18ORCID,Melzer A.13ORCID,Mikikian M.2ORCID,Nosenko V.12ORCID,Pustylnik M. Y.19ORCID,Ratynskaia S.20ORCID,Sankaran R. M.21ORCID,Schneider V.3ORCID,Thimsen E. J.22ORCID,Thomas E.14ORCID,Thomas H. M.19ORCID,Tolias P.20ORCID,van de Kerkhof M.12ORCID

Affiliation:

1. Department of Applied Physics, Eindhoven University of Technology 1 , P.O. Box 513, Eindhoven 5600 MB, The Netherlands

2. GREMI UMR 7344 CNRS and Université d'Orléans 2 , 14 Rue d'Issoudun, 45067 Orleans Cedex 2, France

3. Institute of Experimental and Applied Physics, University of Kiel 3 , Leibnizstr. 19, Kiel 24098, Germany

4. Institute for Theoretical Physics and Astrophysics, Kiel University 4 , Leibnizstrasse 15, Kiel 24098, Germany

5. Department of Mechanical Engineering, University of Minnesota–Twin Cities 5 , Minneapolis, Minnesota 55455, USA

6. Physics and Engineering Physics Department, University of Saskatchewan 6 , Saskatoon, Saskatchewan S7N 5E2, Canada

7. CNRS, Aix-Marseille University, PIIM UMR 7345 7 , Marseille 13397, France

8. T-5 Applied Mathematics and Plasma Physics, Los Alamos National Laboratory 8 , Mail stop: K717, Los Alamos, New Mexico 87545, USA

9. Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University 9 , Suzhou 215006, China

10. Department of Mechanical Engineering, The University of Memphis 10 , Memphis, Tennessee 38152, USA

11. Institute for Solid State Physics and Optics, Wigner Research Centre for Physics 12 , 49, Budapest H-1525, Hungary

12. Department of Physics, and Laboratory for Atmospheric and Space Physics, University of Colorado 13 , Boulder, Colorado 80303, USA

13. Institute of Physics, University of Greifswald 14 , Felix-Hausdorff-Straße 6, Greifswald 17489, Germany

14. Physics Department, Auburn University 15 , Auburn, Alabama 36849, USA

15. La Jolla, California 92093 16 Mechanical and Aerospace Engineering Department, University of California San Diego, , USA

16. Department of Physics and Technology, UiT the Arctic University of Norway 17 , P.O. Box 6050 Langnes, Tromsø N-9037, Norway

17. School of Engineering, Ulster University 18 , BC-04-303, 2-24 York Street, Belfast, United Kingdom

18. Center for Astrophysics, Space Physics, and Engineering Research, Baylor University 19 , Waco, Texas 76798-7310, USA

19. Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR) 20 , Cologne D-51147, Germany

20. Space and Plasma Physics, KTH Royal Institute of Technology 21 , Stockholm SE-100 44, Sweden

21. Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign 22 , Urbana, Illinois 61801, USA

22. Department of Energy, Environmental and Chemical Engineering Institute for Materials Science and Engineering, Washington University in Saint Louis 23 , Saint Louis, Missouri 63130, USA

Abstract

Dusty plasmas are electrically quasi-neutral media that, along with electrons, ions, neutral gas, radiation, and electric and/or magnetic fields, also contain solid or liquid particles with sizes ranging from a few nanometers to a few micrometers. These media can be found in many natural environments as well as in various laboratory setups and industrial applications. As a separate branch of plasma physics, the field of dusty plasma physics was born in the beginning of 1990s at the intersection of the interests of the communities investigating astrophysical and technological plasmas. An additional boost to the development of the field was given by the discovery of plasma crystals leading to a series of microgravity experiments of which the purpose was to investigate generic phenomena in condensed matter physics using strongly coupled complex (dusty) plasmas as model systems. Finally, the field has gained an increasing amount of attention due to its inevitable connection to the development of novel applications ranging from the synthesis of functional nanoparticles to nuclear fusion and from particle sensing and diagnostics to nano-contamination control. The purpose of the present perspectives paper is to identify promising new developments and research directions for the field. As such, dusty plasmas are considered in their entire variety: from classical low-pressure noble-gas dusty discharges to atmospheric pressure plasmas with aerosols and from rarefied astrophysical plasmas to dense plasmas in nuclear fusion devices. Both fundamental and application aspects are covered.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Reference984 articles.

1. The 2022 plasma roadmap: Low temperature plasma science and technology;J. Phys. D: Appl. Phys.,2022

2. Physical aspects of dust–plasma interactions;Contrib. Plasma Phys.,2021

3. The physics of dusty plasmas;Phys. Scr.,1992

4. Cosmic dusty plasma;Annu. Rev. Astron. Astrophys.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3