Optically controllable deformation and phase change in VO2/Si3N4/Au hybrid nanostructures with polarization selectivity

Author:

Zhang Xiaochen1ORCID,Li Yuan2,Dong Weikang1,Liang Qinghua1,Sun Haozhe1,Wang Yang1ORCID,Li Xiaowei3ORCID,Jiang Lan3ORCID,Zhang Xinping2ORCID,Ma He2ORCID,Li Jiafang1ORCID

Affiliation:

1. Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology 1 , Beijing 100081, China

2. Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology 2 , Beijing 100124, China

3. Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology 3 , Beijing 100081, China

Abstract

Optically spatial displacement and material modification hold great potential for the appealing applications in nanofabrication and reconfiguration of functional optical devices. Here, we propose and demonstrate a scheme to achieve simultaneous deformation and phase change in vanadium dioxide (VO2)/Si3N4/Au hybrid nanostructures by laser stimuli. Low triggering threshold and significant deformation characteristics of VO2, based on controllable phase transition, are demonstrated in microscale cantilevers. The plasmonic properties of the nanostructure array are further utilized to achieve a polarization-selective dynamic response. The persistence of deformation and dynamical optical modulation are further demonstrated. Such high-precision fabrication methods and non-contact reconfiguration methods are useful for future applications in dynamic optical manipulation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

National Key Research and Development Program of China

Science and Technology Project of Guangdong

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3