Hydrogen sorption by nanostructures at low temperatures (Review article)

Author:

Vinnikov N. A.1ORCID,Dolbin A. V.1ORCID,Khlistyuck M. V.1ORCID

Affiliation:

1. B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine Kharkiv 61103, Ukraine

Abstract

The features of hydrogen sorption by a wide range of nanostructures — fullerite C60, carbon nanotubes, graphene structures, nanodispersed carbon, including Pd-containing nanoclusters, ordered silicon-oxide-based nanostructures (the MCM-41 family) and silicon-oxide aerogel — have been reviewed. Special attention is given to the sorption characteristics of carbon nanostructures that have been exposed to various modifying treatments (oxidation, gamma-ray irradiation in gas atmosphere, action of pulsed high frequency gas discharge). Two mechanisms of physical low-temperature sorption of hydrogen have been revealed to predominate in such nanostructures in different temperature intervals. At the lowest temperatures (8–12 K), the sorption can actually proceed without thermal activation: it is realized through the tunnel motion of hydrogen molecules along the nanostructure surfaces. The periodic structure of the potential relief, allowed by the surface frame of carbon and silicon-oxide nanostructures, along the rather low interpit barriers are beneficial for the formation of low-dimensional (including quantum) hydrogen-molecule systems practically without thermally activated diffusion. In such nanostructures, the hydrogen diffusion coefficients are actually independent of temperature at 8–12 K. At higher temperatures (12–295 K), a thermally activated mechanism of hydrogen diffusion prevails. The periodic structure of fullerite C60 contains periodic interstitial cavities, separated by rather low potential barriers. Their sizes are sufficient to accommodate impurity hydrogen molecules and, thus, allow diffusion processes, which can also have a tunnel nature. It is shown that gamma-irradiation and high-frequency gas discharge processing increase markedly the quantity of hydrogen strongly bonded to carbon nanostructures.

Publisher

AIP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3