Dissolution of Mg-enriched defects in implanted GaN and increased p-type dopant activation

Author:

Huynh K.1ORCID,Wang Y.1ORCID,Liao M. E.1ORCID,Tweedie J.2,Reddy P.2ORCID,Breckenridge M. H.3,Collazo R.3ORCID,Sitar Z.3ORCID,Sierakowski K.4ORCID,Bockowski M.4,Huang X.5ORCID,Wojcik M.5ORCID,Goorsky M. S.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of California 1 , Los Angeles, California 90095, USA

2. Adroit Materials, Inc. 2 , Apex, North Carolina 27518, USA

3. Department of Materials Science and Engineering, North Carolina State University 3 , Raleigh, North Carolina 27606, USA

4. Institute of High Pressure Physics, Polish Academy of Sciences 4 , Warsaw 01-142, Poland

5. Advanced Photon Source, Argonne National Laboratory 5 , Lemont, Illinois 60439, USA

Abstract

Annealing Mg-implanted homoepitaxial GaN at temperatures above 1400 °C eliminates the formation of inversion domains and leads to improved dopant activation efficiency. Extended defects, in the form of inversion domains, contain electrically inactive Mg after post-implantation annealing at temperatures as high as 1300 °C (one GPa N2 overpressure), which results in a low dopant activation efficiency. Triple-axis x-ray data reveal that implant-induced strain is fully relieved after annealing at 1300 °C for 10 min, indicating that strain-inducing point defects formed during implantation have reconfigured and inversion domains are formed. However, annealing at temperatures of 1400–1500 °C (one GPa N2 overpressure) eliminates the presence of the inversion domains. While residual defects, such as dislocation loops, still exist after annealing at and above 1400 °C, chemical analysis at multiple dislocation loops shows no sign of Mg segregation. Meanwhile, an overall decreasing trend in the dislocation loop density is observed after annealing at the higher temperatures and longer times. Additionally, once inversion domains are formed and the samples are cooled to room temperature, they are shown to dissolve with subsequent annealing above 1400 °C. While such defects have been observed before, the important finding that such defects can be dissolved with a short, higher temperature step is key. Earlier work [Breckenridge et al., J. Appl. Phys. Lett. 118, 022101 (2021)] addressing electrical measurements of these types of samples showed that annealing at 1400 °C leads to a dopant activation efficiency that is an order of magnitude higher than that observed at 1300 °C. This work complements earlier work by identifying the inversion domains, which incorporate Mg, and points to the benefits, in terms of defect density and p-type dopant activation, of using higher temperature (>1400 °C) annealing cycles to activate Mg in GaN, even if the Mg-containing inversion domains had been formed during lower temperature annealing.

Funder

Advanced Research Projects Agency - Energy

Polish National Science Centre for Research and Development

Argonne National Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3