Estimation of Heisenberg exchange interaction in rigid photoexcited chromophore–radical compound by transient EPR

Author:

Kandrashkin Yuri E.1ORCID

Affiliation:

1. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS , Sibirsky Tract 10/7, Kazan 420029, Russia

Abstract

The magnetic field dependence of the spin polarization in a photoexcited rigid chromophore–radical conjugate is theoretically investigated. The excitation of the chromophore–radical conjugate often populates the metastable doublet and quartet states formed by the interactions of the unpaired electrons of the triplet chromophore and the radical. The intensities of the +1/2 ↔ − 1/2 transitions of the doublet and quartet manifolds are sensitive to the ratio jω = 3J/ω0 between the triplet–doublet exchange interaction J and the Zeeman energy ω0. It is shown that the analytical expressions of these intensities previously found for the triplet mechanism of the initial spin polarization can be expanded and applied to a broader class of compounds that may have other intersystem crossing pathways of the depopulation of the excited singlet state of the chromophore. It is also shown that the exchange interaction can be evaluated not only by comparing the electron paramagnetic resonance spectra obtained in different microwave frequency bands but also by comparing the data obtained in the same microwave band but with a shift of the frequency of the resonator. The results obtained broaden the potential applications of the previously proposed approach for analyzing the correlation between the exchange coupling and the distance separating the radical and the chromophore spins, as well as the structure of the bridge connecting their fragments.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3