Magnetic nanoparticles (MNPs) based additively manufactured memory devices

Author:

Mendonsa Riyan1ORCID,Liang Shuang2ORCID,Wang Jian-Ping12ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Minnesota 1 , Minneapolis, Minnesota 55455, USA

2. Department of Chemical Engineering and Materials Science, University of Minnesota 2 , Minneapolis, Minnesota 55455, USA

Abstract

Magnetic nanoparticles (MNPs) in a suspension have been shown to change resistance by an order of magnitude based on an applied field. We have prepared the MNPs samples with matrices of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PDOT:PSS) or H2O, and Co MNPs and carried out the magnetoresistive measurements. A switch-based model is used to understand the mechanism for the change in resistance. We further propose devices for memory based on MNPs. Building blocks for these devices are then fabricated using additive manufacturing techniques and measurements of change in resistance under the influence of a magnetic field are conducted. Niche applications of additive manufacturing techniques to the fabrication of these devices are proposed. The device uses MNPs suspended in a soft matter matrix. The application of a magnetic field is used to move the MNPs to or away from electrical contacts. Depending on the change of position of the MNPs, a connection is either made or broken, which can act as a 1 or a 0. The measured change in resistance observed in such devices is more than an order of magnitude depending on the matrix solution. The proposed device and its manufacturing process could be feasible for magnetic memory and in-memory computing devices on any flexible substrates.

Funder

Seagate Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3