A physics-informed deep learning model to reconstruct turbulent wake from random sparse data

Author:

Xie PeixingORCID,Li Rui,Chen YaoranORCID,Song BaiyangORCID,Chen Wen-LiORCID,Zhou DaiORCID,Cao YongORCID

Abstract

This study develops a flexible deep learning framework aimed at reconstructing the global turbulent wakes from the randomly distributed sparse data. The framework is based on a Generative Adversarial Networks where the generator utilizes U-Net architecture and a constraint module is integrated into the training process. It is designed to overcome challenges posed by the chaotic behavior of turbulent fields, randomness in sensor layouts, and sparse sensor numbers. The efficacy of the model is validated across three high-fidelity datasets, including laminar wake behind a circular cylinder, turbulent wake behind a circular cylinder, and turbulent wake behind a square cylinder. The proposed model demonstrates the ability to accurately reconstruct flow patterns of both turbulent and laminar wakes, even utilizing merely 0.043% of the data from the target flow field. The proposed model exhibits significant generalization capability, which means that the model has a nearly independence from the distributions of sensors and a robust adaptation across the inputs with unseen sensor numbers. Ablation studies elucidate the distinct and complementary roles of each module within the model. Additionally, the behavior of the bottleneck tensor is analyzed through visualization, including comparisons with the lift coefficient, quantitative analyses and dimensionality reduction. These visualizations confirm the ability of the model to extract distinctive phase information reliably from sparse data, thereby guiding the reconstruction of global flow patterns. These findings highlight the potential of the model for applications in fluid dynamics where data is collected in a variable manner.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Sailing Program

Natural Science Foundation of Chongqing

Natural Science Foundation of Shanghai

Shenlan Project of Shanghai Jiao Tong University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3