Visible/near-infrared luminescence and concentration effects of Pr3+-doped Sr2Al2GeO7 downconversion phosphors

Author:

Shen Tiantian1ORCID,Zhao Shanshan1,Su An2,Liu Haisheng1ORCID,Chen Fayi1,Li Benchun1,Han Xinxin3,Yu Dechao13ORCID,Zhang Dawei1

Affiliation:

1. Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology 1 , Shanghai 200093, China

2. School of Mathematics and Physics, Hechi University 2 , Hechi 546300, China

3. MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University 3 , Nanning, Guangxi 530004, China

Abstract

The Pr3+ ion has been widely doped into various materials as a red and near-infrared (NIR) emitting center for applications in lighting and solar spectrum downconversion. Herein, the preparation of a new library of Pr3+-doped Sr2Al2GeO7 phosphors was proved by powder x-ray diffraction patterns and Rietveld refinements and characterized by a scanning electron microscope with energy-dispersive x-ray spectrometry. The Sr2Al2GeO7:Pr3+ sample strongly absorbs blue photons over 420–500 nm and yields intense visible emissions with dominant peaks around 490 nm from the Pr3+ 3P0 → 3H4 transition, as well as robust NIR emission bands over 800–1200 nm. In addition to the typical transitions of 1D2 → 3F2 at 880 nm, 1G4 → 3H4 at 1000 nm, and 1D2 → 3F3,4 at 1070 nm, the distinguishable NIR emission at 929 nm was demonstrated from the 3P0 → 1G4 transition via static and dynamic spectroscopic analysis. Most interestingly, for the 3P0 blue-excited state, a considerably elevated concentration of about 10%Pr3+ was optimal for the visible/NIR emissions, in stark contrast to the diluted optimal 1%Pr3+ for the 1D2 state. The relevant cross-relaxation from the 3P0 and 1D2 states between Pr3+ was comprehensively treated by theoretical speculations and experimental results. Such concentrated Pr3+ blue activators would significantly facilitate the blue-to-NIR downconversion through a desired two-step sequential transition from the 3P0 initial state to the 1G4 intermediate level for quantum efficiency exceeding unity. The current results would consolidate the basis of concentrated Pr3+ donors to promote the novel Pr3+/Yb3+ codoping downconversion for greatly increasing Si solar cell efficiency.

Funder

Natural Science Foundation of Shanghai Municipality

Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3