Fundamental influence of irreversible stress–strain properties in solids on the validity of the ramp loading method

Author:

Shen Jingxiang1ORCID,Kang Wei1ORCID

Affiliation:

1. Center for Applied Physics and Technology, and College of Engineering, Peking University , Beijing 100871, China

Abstract

The widely used quasi-isentropic ramp loading technique relies heavily on back-calculation methods that convert the measured free-surface velocity profiles to the stress–density states inside the compressed sample. Existing back-calculation methods are based on one-dimensional isentropic hydrodynamic equations, which assume a well-defined functional relationship P(ρ) between the longitudinal stress and density throughout the entire flow field. However, this kind of idealized stress–density relation does not hold in general, because of the complexities introduced by structural phase transitions and/or elastic–plastic response. How and to what extent these standard back-calculation methods may be affected by such inherent complexities is still an unsettled question. Here, we present a close examination using large-scale molecular dynamics (MD) simulations that include the detailed physics of the irreversibly compressed solid samples. We back-calculate the stress–density relation from the MD-simulated rear surface velocity profiles and compare it directly against the stress–density trajectories measured from the MD simulation itself. Deviations exist in the cases studied here, and these turn out to be related to the irreversibility between compression and release. Rarefaction and compression waves are observed to propagate with different sound velocities in some parts of the flow field, violating the basic assumption of isentropic hydrodynamic models and thus leading to systematic back-calculation errors. In particular, the step-like feature of the P(ρ) curve corresponding to phase transition may be completely missed owing to these errors. This kind of mismatch between inherent properties of matter and the basic assumptions of isentropic hydrodynamics has a fundamental influence on how the ramp loading method can be applied.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3