Inactivation of microorganisms in model tissues by plasma-activated gas

Author:

Ma Sihong1ORCID,Zhao Pengyu1,Zhang Rui2,Li Kaiyu2,Song Tianyi1,Zhang Zizhu1,Wang Luge1,Guo Li13ORCID,Wang Zifeng1ORCID,Zhang Hao13ORCID,Liu Dingxin13ORCID,Wang Xiaohua1ORCID,Rong Mingzhe1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University 1 , Xi'an 710049, People's Republic of China

2. School of Life Science and Technology, Xi'an Jiaotong University 2 , Xi'an 710049, People's Republic of China

3. Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University 3 , Xi'an 710049, People's Republic of China

Abstract

Plasma is highly efficient in the inactivation of microorganisms and is tried to be applied to the treatment of wounds. The gas activated by plasma, named plasma-activated gas, can also effectively inactivate microorganisms and get rid of the limitations of direct plasma treatment. However, the details of the interaction of plasma-activated gas on the tissue are still unclear. In this study, the agarose gel models in the presence of microorganisms to simulate the infected tissues were used to study the inactivation effects and mechanisms of plasma-activated gas. The inactivation depths in the gel models in the presence of microorganisms were related to the types of plasma-activated gas and the species of microorganisms. The Mixed-gas exhibited the strongest inactivation effects, and the inactivation depths in the gel models in the presence of bacteria were deeper than those in the presence of fungi. The long-lived species in the plasma-activated gas penetrated to more than 5.2 mm while the short-lived species only penetrated less than 2.3 mm, demonstrating the distinct roles of reactive species in the inactivation process. Moreover, the pig muscle was covered on the gel models to assess the penetration depths of the plasma-activated gas in muscle tissue and the focused plasma-activated gas could penetrate 1–1.5 mm of pig muscle. This study explored the inactivation effects and mechanisms on the gel models and the penetration depths in the real tissues of plasma-activated gas, which supplied the theoretical basis for the further application of plasma-activated gas in biomedical fields.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3