Fully reconfigurable optomechanical add-drop filters

Author:

Lei Yuechen12,Hu Zhi-Gang12,Wang Min12,Gao Yi-Meng12,Zuo Zhanchun13,Xu Xiulai4,Li Bei-Bei13ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

2. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

3. Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China

4. State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People’s Republic of China

Abstract

Fully reconfigurable add-drop filters (ADFs) have important applications in optical communication and information processing. Here, we demonstrate a broadly tunable add-drop filter based on a double-disk cavity optomechanical system, side-coupled with a pair of tapered fiber waveguides. We investigate the dependence of the through (drop) efficiency on coupling rates between the cavity and two waveguides by varying cavity-waveguide distances. By optimizing the cavity-waveguide coupling rates, a drop efficiency of 89% and a transmission of 1.9% have been achieved. Furthermore, tuning of the ADF is realized by changing the air gap of the double disk using a fiber tip, which is controlled by a piezoelectric nanostage. Benefiting from the large optomechanical coupling coefficient and the mechanical compliance of the double-disk microcavity, a tuning range of 8 nm has been realized using a voltage of 7 V on the piezoelectric nanostage, which is more than one free spectral range of the cavity. As a result, both the through and drop signals can be resonant with any wavelength within the transparent window of the cavity material, which indicates that the ADF is fully reconfigurable.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

basic frontier science research program of Chinese Academy of Sciences

Open Project of the Key Laboratory of Metrology and Calibration

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3