Superior energy storage and discharge performance achieved in PbHfO3-based antiferroelectric ceramics

Author:

Li Shuifeng12ORCID,Tang Xin-Gui1ORCID,Guo Xiao-Bin1ORCID,Tang Zhenhua1ORCID,Liu Qiu-Xiang1ORCID,Jiang Yan-Ping1ORCID,Li Wenhua1ORCID,Lu Sheng-Guo3,Zheng Guangping4ORCID

Affiliation:

1. School of Physics and Optoelectric Engineering, Guangdong University of Technology 1 , Guangzhou 510006, China

2. Experimental Teaching Department, Guangdong University of Technology 2 , Guangzhou 510006, China

3. School of Materials and Energy, Guangdong University of Technology 3 , Guangzhou 510006, China

4. Department of Mechanical Engineering and Shenzhen Research Institute, Hong Kong Polytechnic University 4 , Hung Hom, Kowloon, Hong Kong 999077, China

Abstract

Dielectric capacitors prepared by antiferroelectric (AFE) materials have the advantages of large power density and fast discharge ability. It has been a focus on the improvement of the recoverable energy density (Wrec) and discharge energy–density (Wdis) in the AFE ceramics. To address the above issue, optimizing the proportion of components is proposed for enhancing ceramic antiferroelectricity, ultimately improving the breakdown strength (Eb) and Wrec. In this work, an ultrahigh Wrec (14.3 J/cm3) with an excellent energy efficiency (η) of 81.1% is obtained in (Pb0.96Sr0.02La0.02)(Hf0.9Sn0.1)O3 AFE ceramic at electric field of 490 kV/cm, which is the maximum value reported in lead-based AFE ceramics fabricated by the conventional solid-state reaction method so far. The multistage phase transition induced by the electric field is observed in the polarization–electric field (P–E) hysteresis loops. Furthermore, an outstanding power density (PD) of 335 MW/cm3 and an excellent Wdis of 8.97 J/cm3 with a rapid discharge speed (102 ns) are obtained at electric field of 390 kV/cm. In addition, (Pb0.96Sr0.02La0.02)(Hf0.9Sn0.1)O3 ceramics also possess an excellent thermal and frequency stability. These exceptional properties indicate that (Pb0.98−xSrxLa0.02)(Hf0.9Sn0.1)O3 ceramics are a potential candidate for pulsed power devices and power electronic devices.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Natural Science Foundation of Guangdong Province

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3