Multi-scale analysis of seepage and erosion on collapse accumulation slope

Author:

Zhao XiaoyiORCID,Pei Xiangjun,Zhang XiaochaoORCID,Huang Tiao,Zhu JinyuORCID

Abstract

This study focused on the slope surface of debris deposits during the Luwei Sea landslide. Through seepage erosion tests, nuclear magnetic resonance and the coupling of computational fluid dynamics with the discrete element method, the seepage erosion of four representative areas on the slope surface was systematically studied at the macroscopic, mesoscopic and microscopic levels. The results showed that the particle size distribution has a significant impact on the seepage erosion characteristics. When the ratio of soil to rock was higher, soil–rock mixture showed stronger resistance to infiltration and soil protection during seepage erosion. The applied osmotic pressure also affected seepage erosion. However, when the osmotic pressure exceeded a certain critical value, pore blockage became the main mechanism of seepage erosion. Furthermore, a vegetation-based soil stabilization method involving geotechnical reconstruction and material soil stabilization in unvegetated areas was proposed, thereby promoting vegetation growth and enhancing slope stability. Our findings provided effective measures and a strategic theoretical basis for the rehabilitation of mudslide accumulation sites.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3